Surgical technique for abdominal myomectomy: reducing blood loss

Surgical techniques available for myomectomy allow safe removal of even large fibroids (56). Use of tourniquets and vaso-constrictive substances may be used to limit blood loss. Pitressin, a synthetic vasopressin (Monarch Pharmaceuticals, Bristol, UK), decreases blood loss during myomectomy and, in a prospective, randomized study, was as effective as mechanical occlusion of the uterine and ovarian vessels (62, 63). Vasopressin, an antidiuretic hormone, causes constriction of smooth muscle in the walls of capillaries, small arterioles, and venules. The use of vasopressin to decrease blood loss during myomectomy is an off-label use of this drug.

Uterine incisions made transversely, parallel to the arcuate vessels, may reduce bleeding. A midline vertical uterine incision, suggested elsewhere to avoid inadvertent extension of the incision to the cornua or ascending uterine vessels, cuts across multiple arcuate vessels and may be associated with greater blood loss (64). Transverse incisions may avoid many of these vessels (65). Extending the uterine incisions through the myometrium and entire pseudocapsule until the fibroid is identified clearly will identify a less vascular surgical plane. This avascular plane often is deeper than is commonly recognized. It has been noted, on the basis of vascular corrosion casting and examination by electron microscopy, that fibroids are completely surrounded by a dense vascular layer that supplies the fibroid and that no distinct, so-called vascular pedicle exists at the base of the fibroid (66) (Fig. 2).

Limiting the number of uterine incisions has been suggested to reduce the possibility of adhesions to the uterine serosa (64). But to extract distant fibroids, tunnels must be created within the myometrium, making hemostasis within these defects difficult. Alternatively, an incision can be made directly over a fibroid, and only easily accessed fibroids can be removed (56). The defect can be closed promptly with layers of running sutures, and hemostasis can be secured immediately. Multiple uterine incisions may be needed, but adhesion barriers may help limit adhesion formation (67).

Cell savers have been used extensively in orthopedic, cardiac, and neurological surgery and should be considered for use during myomectomy (or hysterectomy). These devices suction blood from the operative field, mix it with heparinized saline, and store the blood in a canister. If the patient requires blood reinfusion, the stored blood is washed with saline, filtered, processed by centrifuge to a hematocrit of approximately 50%, and given back to the patient by IV. Therefore, the need for preoperative autologous blood donation or heterologous blood transfusion often can be avoided (68). In a study of 91 women who had myomectomy for uterine size of >16 weeks, the cell saver was used for 70 women who had a mean volume of reinfused, packed red blood cells of 355 mL (56). Use of the cell saver avoids the risks of infection and transfusion reaction. The cost of using a cell saver, compared with donation of autologous blood, has not been studied for abdominal myomectomy. Most hospitals charge a minimal fee for having the cell saver available and charge additionally if it is used. Assuming that most women who donate autologous blood before myomectomy do not require blood transfusion, availability of the cell saver would spare many women the time and expense of donating, storing, and processing autologous blood. The cost of the cell saver for a cohort of women should, therefore, be significantly lower than the cost of autologous blood.